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Abstract

This study investigates land use changes that influence the land surface temperature (LST) 
of the land cover environment in the Chennai Metropolitan Area (CMA), India, over three 
decades (1991-2021). Landsat satellite imageries were used to classify the CMA into six land 
use and land cover (LULC) types using the Support Vector Machine (SVM) classification 
technique. Similarly, LST was calculated using Thermal Infrared (TIR) bands through the 
conversion of radiation into temperature and estimated emissivity (e) through Normalized 
Difference Vegetation Index (NDVI) calculation. The result shows that LST increased from 
35.6°C to 47.2°C. To evaluate the relationship between LST and LULC over the study period, 
Zonal Statistics Analysis (ZSA) was used. The findings show a steady rise in LST across 
all types of land use and land cover, with a built-up area-specific trend being particularly 
notable. The linear correlation between the mean sensitive land use and land cover (LULC) 
and the mean land surface temperature (LST) shows a strong positive relationship between 
the mean LST and the mean Normalized Difference Built-Up Index (NDBI). These findings 
highlight the significant influence of land use changes, particularly built-up land, on the 
increasing LST of the surrounding land cover.

Keywords: Land Surface Temperature (LST), Support Vector Machine (SVM), Thermal 
infrared (TIR), Zonal Statistics Analysis (ZSA), Normalized Difference Built-Up Index 
(NDBI).

Introduction

The rapid expansion of impervious surfaces 
in urban areas has a significant environmental 
impact, leading to changes in surface 
properties and contributing to the urban heat 
island (UHI) effect. Several megacities in 
India are experiencing significant horizontal 
and vertical development. This study aims to 
investigate the complex relationship between 

land use changes, land surface temperature 
(LST), and the overall land cover environment 
in the Chennai Metropolitan City.

Understanding the intricate relationship 
between land use transformation, LST, 
and the land cover environment in the 
Chennai metropolitan city is crucial for 
informed urban planning and effective 
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adaptation to climate change. This study 
provides comprehensive insights into how 
urbanization influences temperature patterns 
and environmental conditions with its 
implications for sustainable development. 
The global significance of studying land use 
and land cover (LULC) changes and their 
impact on LST is evident in the substantial 
attention this subject has received from 
researchers worldwide. Numerous studies, 
employing diverse methodologies, have 
demonstrated a significant association 
between land use dynamics and LST 
variations. For instance, Saha et al. (2020) 
conducted a comprehensive study in Kolkata 
using Landsat data spanning over 1988 to 
2018, revealing a notable correlation between 
land use changes and LST. Similarly, Das et 
al. (2022) identified a substantial increase in 
seasonal LST in Chandannagar city, Kolkata, 
attributed to LULC changes. Chanu et al. 
(2021) observed significant LULC changes 
in the Greater Chennai region over 11 years, 
with a noteworthy temperature increase from 
37.61°C in 2005 to 41.25°C in 2016. Exploring 
LST in major Indian metro cities, Shahfahad 
et al. (2020) utilized advanced algorithms like 
a mono window (MWA) and split window 
(SWA), correlating their findings with NDVI 
and NDBI. Mumbai exhibited the highest 
LST, while Kolkata recorded the lowest, 
showcasing diverse accuracy in coastal and 
interior cities between MWA and SWA. 
Chatterjee et al. (2021) delved into LULC 
and LST changes in Kolkata from 2005 to 
2019, revealing reduced vegetation cover 
towards the city core and urban expansion 
towards the outskirts, resulting in a peak LST 
of 41°C in 2019. In the South Karkheh Sub-
basin, Iran, Ghobadi et al. (2013) unveiled 
a negative correlation between LST and 

NDVI, affirming vegetation's cooling effect. 
Examining four Nigerian cities, Ayanlade et 
al. (2021) linked LST increases to changes 
in LULC, emphasizing the urban heat island 
effect. Similarly, Kesavan et al. (2021) 
identified higher LST in four Nigerian cities 
due to LULC changes, using the ARIMA 
model to reveal a progressive increase in LST 
in built-up areas.

Previous studies extensively explored the 
relationship between land use changes and 
Land Surface Temperature (LST), utilizing 
remote sensing data, GIS techniques, 
statistical analysis, and predictive modelling. 
However, this study distinguishes itself by 
specifically investigating the influence of 
land-use changes on variations in LST and 
their subsequent impact on the temperatures 
of the surrounding land cover. Chennai 
Metropolitan Area (CMA), the capital of Tamil 
Nadu, has undergone rapid growth, leading to 
extensive infrastructure development and a 
substantial increase in its geographical extent. 
According to the 2022 report by the Chennai 
Metropolitan Development Authority, the 
CMA has expanded from 1189 km2 to 5904 
km2. This expansion has resulted in the loss of 
natural landscapes, disruption of ecosystems, 
and alterations in hydrological patterns 
(Anushiya et al., 2021). The present study 
provides valuable and reliable insights into 
the environmental conditions of the rapidly 
urbanizing CMA, offering relevance for 
understanding similar trends in other highly 
urbanized regions. The research identifies 
heat stress areas, aids urban comfort, and 
supports biodiversity preservation. This study 
aims to (1) examine LULC and LST changes, 
(2) explore the influence of land use changes 
on LST and land cover, and (3) determine the 
impact of mean LST on sensitive categories.
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Study area 

Situated in southern India, the CMA is a 
large metropolis covering 1,189 km2 and 
positioned between latitudes 12°50'49"N 
and 13°17'24"N, and longitudes 79°59'53"E 
and 80°20'12"E (Fig. 1). Experiencing a 
tropical wet and dry climate due to its coastal 
proximity and the thermal equator, the 
CMA experiences scorching temperatures 
in May and June (35°C–40°C), while 
January represents the coldest period with 
temperatures around 19–25°C. 

The city receives an average annual 
rainfall of approximately 1400 mm, with 
the highest during the Northeast monsoon 
season (October to December) (IMD 
2010). Chennai has evolved into a thriving 
information technology hub, transitioning 
from its commercial and manufacturing 
origins (Krishnamurthy and Desouza, 2015) 
which are responsible for attracting a larger 
population to the Chennai Metropolitan Area 
(CMA). Additionally, the CMA benefits from 
a well-established transportation network that 
efficiently connects it to major cities across 
India. Its flat terrain and coastal position along 
the Bay of Bengal further contribute to its 
position as one of the most densely populated 
regions in the country. According to the 
2011 census, Chennai's urban agglomeration 
accommodated around 8.65 million people, 
resulting in a population density of 2,109 
persons per km2.

Dataset

Satellite data from Landsat 5 TM, 7 ETM+, 
and 8 OLI/TIRS sensors were obtained for 
1991, 2001, 2011, and 2021 from the USGS 
website (Table 1). Images closest to the 
vernal or autumnal equinox were prioritized 
for equal radiation, enhancing reliability for 

LST and LULC estimation. The acquired 
images correspond to Row 142 and Path 051 
in the WRS, projected using the WGS 84 
datum and UTM coordinate system (Zone 
44 North). Pre-processing involves multiple 
steps. Layer stacking combined the Blue, 
Green, Red, and NIR bands, followed by 
histogram equalization to enhance contrast 
in all bands. The LULC classification was 
performed using the stacked images, and 
ancillary data from sources such as the Survey 
of India (SOI) Toposheet (1: 50,000 scale) 
and Google Earth images were used to create 
training data for classification and evaluate 
result accuracy. For land surface temperature 
calculations, Thermal Infrared Sensor 
(TIRS) Band 6 was employed for Landsat-5 
and Landsat-7, while Band 10 was used for 
Landsat-8. Normalized Difference Vegetation 
Index (NDVI) computation utilized the Near 
Infrared (NIR) and Red bands. Similarly, 
Short Wave Infrared (SWIR) and NIR bands 
were employed for the Normalized Difference 
Built-Up Index (NDBI) calculation, and 
Green and Red bands were used for the 
Normalized Difference Water Index (NDWI).

Methods 
SVM classification 
For Land Use and Land Cover (LULC) 
classification, the study employed Support 
Vector Machine (SVM) algorithms through 
the ENVI 5.2 image processing software. 
Introduced by Vapnik in 1995, SVM has 
gained widespread acceptance in remote 
sensing due to its robust statistical basis 
and superior empirical performance. It 
outperforms traditional techniques such as 
neural networks and maximum likelihood 
classifiers, as evidenced by various studies 
(Singh et al., 2014). Foody & Mathur (2004) 
demonstrated SVM's higher accuracy in 
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multi-class image classification compared to 
classifiers like discriminant analysis (DA), 
decision tree (DT), and feed-forward neural 
network. The SVM classification utilized 
four kernels: linear, polynomial, Radial 
Basis Function (RBF), and sigmoid. The 
study specifically applied the RBF kernel 
due to its low computational complexity 
and effectiveness in handling non-linear 

relationships between training data and the 
entire dataset, as recommended by Mishra 
et al. (2019). The RBF kernel function is 
represented in Equation 1. 

Using Anderson's classification (1976) 
and NRSC's 2012 categorization, CMA was 
classified into six types of LULC: fallow 

Date Landsat/Sensor Scene ID
26.09.1991 5 TM 19910926_20170126_01_T1
21.03.2001 7 ETM + 20010321_20170206_01_T1
09.03.2011 5 TM 20110309_20161209_01_T1
20.03.2021 8 OLI/TIRS 20210320_20210328_02_T1

Table 1: Satellite data specifications

Fig. 1 Study area
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land, built-up land, vegetation, scrubland, and 
water bodies. Following the pre-processing of 
satellite images, training data were collected 
for each land use and land cover class from 
the satellite imagery, aided by Survey of India 
toposheets and Google Earth. These selected 
samples were then used as input for SVM 
classification.

Accuracy assessment 
Correctness refers to the extent of alignment 
between classified satellite images and 
the actual ground truth. This assessment 
method gauges how accurately the classified 
map represents the real land cover and 
land use on the ground, utilizing reliable 
reference data such as GPS data, ground 
truth data, and high-resolution imagery. To 
evaluate categorization accuracy, a total of 
288 checkpoints were randomly selected 
through a robust sampling procedure. Various 
measures, including overall classification 
accuracy, producer accuracy, user accuracy, 
and Cohen’s Kappa coefficient (1960), were 
calculated (Eq. 2).

In the matrix, 'r' denotes the number 
of rows, and 'xii' signifies the count of 
observations in both column 'i' and row 'i' 
(diagonal elements). 'x+i' and 'xi+' represent 
the marginal totals in row 'r' and column 'i,' 
respectively, while 'N' stands for the total 
number of observations. User accuracy 
metrics and producer accuracy metrics, 
addressing commissions and omissions, 
have been thoroughly discussed by Singh, 
P. (2018). Subsequent to calculating the area 
and changes in LULC, the LST was computed 
using specific steps.

Retrieval of land surface temperature 
(RLST) 
Conversion of digital numbers to sensor 
radiance: The TIRS bands recorded by Landsat 
sensors are stored as digital numbers (DN), 
representing various brightness levels. The 
first step in calculating LST is the conversion 
of DN values to radiance. Specifically, 
for Landsat-8, the DN is transformed into 
spectral radiance (Eq. 3).

In the equation, Lλ represents spectral 
radiance (W m-2 sr-1 µm-1), ML and AL are 
rescaling factors, Qcal denotes quantized and 
calibrated pixel value (DN), and Oi represents 
the calibration offset. For Landsat-8 TIRS 
band 10, the calibration factor is 0.29 (usgs.
gov 2016). DN was converted to radiance in 
Landsat-5 TM and Landsat-7 ETM+ using a 
spectral radiance rescaling equation (Eq. 4), 
which differed from Landsat-8.

In the context of calculating LST, Lλ is 
the spectral radiance at the sensor (measured 
in W m-2 sr−1 μm−1). LMAXλ is the 
spectral radiance scaled to the maximum 
quantized calibrated pixel value (Qcalmax), 
and LMINλ is the spectral radiance scaled 
to the minimum quantized calibrated pixel 
value (Qcalmin), both measured in W m-2 
sr−1 μm−1. Qcalmin corresponds to the 
minimum quantized calibrated pixel value, 
and Qcalmax corresponds to the maximum 
value. All variables, except for Qcal, are 
provided in the metadata file of a scene.

Computation of brightness temperature
After converting DN to radiance, the next 
step is to apply Eq. 5 to convert radiance to 
brightness temperature. This concept is based 
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on the idea that a black body must reach a 
certain brightness temperature to emit or 
receive an equal amount of radiation per unit 
surface area.

Tsen represents the top of atmosphere 
brightness temperature, while Lλ denotes 
the top of atmosphere spectral radiance 
(Watts m-2 srad-1 μm−1). K1 and K2 are 
band-specific thermal conversion constants 
obtained from the metadata. The resulting 
values were then converted from Kelvin to 
Celsius.

Determination of land surface 
emissivity (LSE)
The NDVI, derived from the reflectance of 
Earth's features in the NIR and Red bands 
of the electromagnetic spectrum, is utilized 
to calculate emissivity (ε) and vegetation 
proportion (Pv) for determining LST. Positive 
NDVI values indicate vegetated areas, while 
negative values show non-vegetated surfaces. 
For Landsat-5 TM and Landsat-7 ETM+, 
band 3 is red, and band 4 is NIR. For Landsat 
8 OLI/TIRS, band 4 is red, and band 5 is NIR 
(Eq. 6).

Calculation of surface emissivity using 
the NDVI threshold method
Surface emissivity, a crucial factor in LST 
inversion, accounts for the variance in 

heat radiation emitted by different LULC 
types. Emissivity (ε) is defined as the ratio 
of radiated light to blackbody emission at 
a given wavelength and temperature. The 
NDVI threshold approach was employed to 
calculate surface-specific emissivity, relying 
on the strong linear correlation between 
NDVI and particular surface emissivity. The 
NDVI threshold approach (Table 2) was 
utilized for emissivity calculation.

Calculation of land surface temperature 
The Landsat series data has been utilized 
to calculate the LST for each pixel (Eq. 7), 
where BT is the brightness temperature, λ 
is the wavelength of the radiance emitted 
in each band, σ is the Stefan-Boltzmann 
constant, and ε is the surface emissivity.

Zonal statistics (ZA)

Zonal Statistics is a tool employed for 
calculating statistics within specified zones 
in a dataset, offering insights into spatial 
patterns and relationships. It facilitates 
the analysis of variables like land cover, 
temperature, and other geospatial data within 
defined zones, allowing users to comprehend 
patterns and make informed decisions. Zonal-
based spatial analysis provides a collection of 
more micro-sized observations (Openshaw, 
1996). A single output value is generated for 
each zone in the input zone dataset, revealing 

NDVI value Land surface emissivity
NDVI < - 0.185 0.995

-0.185 <NDVI < 0.157 0.970
0.157 < NDVI < 0.727 1.0094 + 0.047 * ln (NDVI)

NDVI > 0.727 0.990

Table 2: NDVI and emissivity threshold levels
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the association between LULC and LST. 
This approach proves effective in evaluating 
the relationship between LULC and LCT 
(Ghobadi et al., 2013). The Zonal Statistics 
results offer valuable insights into the actual 
trends of LST within each LULC type and how 
the LST of land cover features is influenced 
by the surrounding land use. Such analysis 
contributes to a deeper understanding of 
the thermal behaviour of various land cover 
elements, shedding light on the dynamics and 
interactions between land use and LST across 
the research period.

Results and discussion

Accuracy assessment

Table 3 summarizes LULC categorization 
accuracy, producer accuracy, and user 
accuracy. Water bodies consistently exhibit 
high accuracy, with producer accuracy 
ranging from 92.86 to 100 percent, and 
user accuracy from 86.67 to 92.86 percent, 

indicating reliable classification throughout 
the year. Built-up areas also demonstrate high 
accuracy, with producer accuracy ranging 
from 87.76 to 100 percent and user accuracy 
from 81.82 to 95.40 percent. Fallow Land 
maintains consistent accuracy, with producer 
accuracy between 87.93 and 94.44 percent, 
and user accuracy from 86.08 to 92.31 
percent. Vegetation accuracy varies, with 
producer accuracy between 47.83 and 85.71 
percent, and user accuracy from 61.54 to 100 
percent, notably improving between 2011 and 
2021. Scrubland accuracy ranges from 33.33 
to 100 percent, with producer accuracy from 
33.33 to 100 percent, and user accuracy from 
20 to 100 percent, showing improvement 
between 2011 and 2021.

The accuracy of agricultural land is 
consistent, with producer accuracy ranging 
from 78.95 to 100 percent, and user accuracy 
from 75 to 88.24 percent. 

Class Name
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Water bodies 93.33 93.33 92.86 86.67 100.00 92.86 87.50 87.50
Built-up 94.74 81.82 97.73 87.76 90.38 90.38 100.00 95.40
Fallow land 94.44 86.08 92.31 92.31 87.93 89.47 89.47 91.89
Vegetation 47.83 84.62 61.54 80.00 75.00 85.71 25.00 100.00
Scrubs 50.00 100.00 20.00 100.00 33.33 100.0 72.73 100.00
Agriculture 88.24 78.95 85.71 75.00 100.00 84.62 100.00 82.35
Classification 
accuracy 86.06 88.82 89.02 93.04

Kappa 
statistics 0.8063 0.8323 0.8517 0.891

Table 3: Accuracy assessment for the years 1991, 2001, 2011, and 2021.
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Fig. 2: Land Use and Land Cover map a) 1991 b) 2001 c) 2011 and d) 2021

Class Name
Area in (km2) Area (%)

1991 2001 2011 2021 1991 2001 2011 2021
Agriculture 122.5 122.7 140.6 123.6 10.3 10.3 11.8 10.4
Fallow Land 589.5 534.7 400.6 252.2 49.6 45 33.7 21.2

Built-up 144.8 277.4 395.3 620.3 12.2 23.3 33.3 52.2
Scrubs 18 17.4 14.5 16.4 1.5 1.5 1.2 1.4

Vegetation 118.3 91.7 105.5 61.8 10 7.7 8.9 5.2
Water bodies 195.2 144.5 131.8 114 16.4 12.2 11.1 9.6

Total 1188.4 100

Table 4: Area Calculation of LULC

Overall classification accuracy ranges 
from 86.06 to 93.04 percent, indicating an 
increasing trend over time. The categorization 
of kappa in this study varies from 0.81 to 
0.891, falling within an acceptable range. 

Land use and land cover area 

Table 4 and Fig. 2 represent the areas of 
different LULC classes in square kilometres 
and their corresponding percentages for 1991, 
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Fig. 3: Dynamics of LULC, 1991-2021
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2001, 2011, and 2021 (Fig. 2).

The agricultural land area has slightly 
decreased, potentially due to its concentration 
in the outer peripheral regions. A notable 
transformation is evident, where a significant 
portion of fallow land has been converted 
into built-up areas. Figures 2(a) to 2(d) 
illustrate the CMA's expansion in built-up 
areas, particularly in the southern and western 
directions with Chennai as the focal centre. 
Figure 2(a) shows sparsely developed territory 
in the southern and western directions, which 
has expanded in all directions over time, 
contributing to the observed built-up land 
cover in 2021. In 2021, there was a substantial 
increase in built-up land to approximately 
620.3 km2, while fallow land decreased to 
252.2 km2, indicating ongoing urbanization 
or development in the region. The expanded 
built-up land has encroached upon smaller-
sized water bodies, especially in the central 
part of CMA.

The most striking trend revealed by Table 
5 and Figure 3 is the consistent increase in 
built-up areas over the three decades, with 
a significant rise of 225 km2 from 2011 to 
2021. This points to rapid urbanization and 
expansion of impervious surfaces within 
the study area. Conversely, fallow land 
experienced substantial decreases, notably 
declining by 148.4 km2 from 2011 to 2021. 
This suggests a significant shift away from 
fallow land use. These contrasting trends 
highlight the dominant impact of urban 
development on land cover changes.

Land surface temperature
From 1991 to 2021, the CMA exhibited 
a consistent increase in LST (Table 6 and 
Figure 4). The mean temperature rose 
steadily from 28.95°C in 1991 to 37.49°C in 
2021. The standard deviation also increased 
significantly from 1.89°C in 1991 to 2.43°C in 
2021, highlighting growing unpredictability. 
These trends emphasize the presence of 

Year
Land surface Temperature

Maximum Minimum Mean STD
1991 35.6 22.3 28.95 1.89
2001 37.2 21.9 28.15 1.81
2011 43.3 24.5 32.63 2.63

Table 6: LST statistics from 1991 – 2021

Class 
Changes in km2 Changes in Percentage 

1991-2001 2001-2011 2011-2021 1991-2001 2001-2011 2011-2021
Agriculture 0 17.9 -17 0 1.5 -1.4
Fallow land -4.6 -134.1 -148.4 -4.6 -11.3 -12.5

built-up 11.1 117.9 225 11.1 10 18.9
Scrubland 0 -2.9 1.9 0 -0.3 0.2
Vegetation -2.3 13.8 -43.7 -2.3 1.2 -3.7

Water bodies -17.8 -12.7 -4.2 -1.5 -1.1 -4.2

Table 5: LULC changes
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urban heat island effects and the need to 
address the impact of rising LST on the urban 
environment and human health in CMA.

Zonal statistics  

Zonal statistics over three decades reveal 
significant temperature changes across 
different land cover classes (Table 7). 
Maximum Land Surface Temperature (LST) 
steadily rose in Built-up areas, from 35.68°C 
in 1991 to 47.06°C in 2021, indicating 
consistent warming. Similarly, LST increased 
in fallow land (35.29°C to 47.17°C) and 
agriculture (32.93°C to 46.22°C) over the 
same period, suggesting overall warming 
trends. Notably, the mean LST of Built-up 
areas showed a significant upward trend. 

While fallow land remained relatively 
stable, agriculture exhibited a clear increase. 
Moreover, temperature variability within the 
study area saw moderate changes in Built-up 
areas and a notable increase in agriculture 
over the years.

Water bodies, scrubland, and vegetation 
demonstrated notable changes in LST over 
the studied period. Water bodies exhibited 
an increase in maximum LST, suggesting 
warming trends, while the mean LST 
consistently rose. Scrubland maintained 
relatively stable readings, and vegetation 
showed a significant temperature rise. 
Additionally, the standard deviation of LST 
increased for water bodies, indicating greater 
temperature variability. These findings 
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1991

Min 22.39 22.39 22.38 22.82 22.82 22.82
Max 35.68 35.29 32.93 35.29 34.09 35.68
Mean 28.78 28.48 26.93 26.17 27.16 27.22

SD 1.45 1.57 1.67 1.94 1.74 1.58

2001

Min 23.69 23.25 24.12 21.95 23.26 22.85
Max 37.26 36.47 33.69 35.68 34.89 34.89
Mean 28.81 28.83 27.38 25.76 26.7 27.41

SD 1.48 1.56 1.35 1.28 1.17 1.34

2011

Min 25 25 24.5 25 25.4 25
Max 43.4 42.6 41.9 42.6 39.3 41.9
Mean 33.9 33 31.5 29.4 31.9 32.2

SD 1.8 2.1 2.3 3.2 1.8 2.3

2021

Min 25.99 28.2 28.58 27.22 29.02 28.96
Max 47.06 47.17 46.22 47.23 45.79 46.53
Mean 37.28 38.54 38.41 35.73 35.82 37.26

1.85 2.05 2.4 4.08 1.75 2.44

Table 7: Zonal statistical analysis (ZSA) of LULC and LST
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Fig. 5: Mean LST of Land use & land cover, 1991-2021

Fig. 6: Mean LST and mean LULC a) Mean LST b) Mean NDVI  
c) mean NDWI d) Mean NDB1
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underscore the diverse thermal behaviours of 
various land cover types and their potential 
implications for ecosystem dynamics and 
climate monitoring.

Relation between LST, LU, and LC 
Environment
The zonal statistical analysis in Figure 5 and 
Table 7 reveals a consistent trend of increasing 
surface temperatures over time in different 
land use and land cover types. Built-up 

areas, fallow land, and agriculture- all show 
rising LST values, indicating a warming 
trend. Similarly, water bodies, scrubland, 
and vegetation exhibit an upward trend in 
LST levels, with vegetation experiencing 
a particularly significant temperature 
increase. These findings highlight a potential 
correlation between land use and land cover 
types, emphasizing the distinct thermal 
characteristics of each category and their 

Fig. 7: Linear correlation between LST and various mean Sensible LULC    
   a) Mean NDVI and Mean LST,  b) Mean NDWI and LST, c) Mean NDBI and Mean LST  
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potential impact on ecosystem dynamics and 
climate monitoring. Further research could 
explore a finer-grained linear correlation 
between land use LST and land cover LST to 
strengthen this connection.

Correlation between LST & sensible LU 
and LC
Statistical analysis is performed to establish 
a linear relationship between different 
spectral indices, including the mean 
Normalized Difference Built-up Index 
(NDBI), Normalized Difference Vegetation 
Index (NDVI), Normalized Difference Water 
Index (NDWI), and the mean Land Surface 
Temperature (LST) (Fig. 6).

The correlation between mean LST 
and NDVI is weak (R-squared = 0.0235), 
suggesting a minimal linear relationship. 
Other LULC factors may have a stronger 
influence on LST.

The correlation between mean LST and 
NDWI is moderate (R2 = 0.4863) indicating 
a moderate linear relationship, with NDWI 
explaining 48.63 percent of the LST variation. 
Similarly, the correlation between mean LST 
and NDBI is relatively strong (R2 = 0.5694), 
with NDBI explaining around 56.94 percent 
of the LST variation (Fig. 7).

Conclusion 

The impact of three decades of land use 
changes on land surface temperature in the 
Chennai Metropolitan Area (1991-2021) was 
examined using Landsat satellite imagery and 
Support Vector Machine (SVM) techniques. 
This study reveals a significant increase in 
built-up land over the years, while all other 
land uses show decreasing trends. This 
indicates that urbanization is the primary 
driver dominating other Land Use and Land 

Cover (LULC) changes. Similarly, Land 
Surface Temperature (LST) has steadily 
risen from 1991 to 2021, with maximum and 
minimum temperatures, along with mean 
LST, increasing by almost 8.5 degrees Celsius 
over the period.

The analysis of Zonal Statistics shows that 
built-up areas consistently exhibit the highest 
mean LST compared to other LULC types. 
However, temperatures for all other land uses 
also show a gradually increasing trend over 
the study period. Mean LST demonstrates 
a moderate correlation with NDWI and a 
relatively strong correlation with NDBI. This 
study observes a consistent increase in LST 
on built-up land, which impacts surrounding 
land uses. This trend suggests that the urban 
heat island effect will likely persist in the 
CMA in the future. To mitigate the effects of 
rising temperatures, this study recommends 
increasing green spaces, regulating and 
monitoring new constructions, creating more 
green infrastructure, and protecting water 
bodies. These measures may help reduce LST 
and promote sustainability in the region.
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